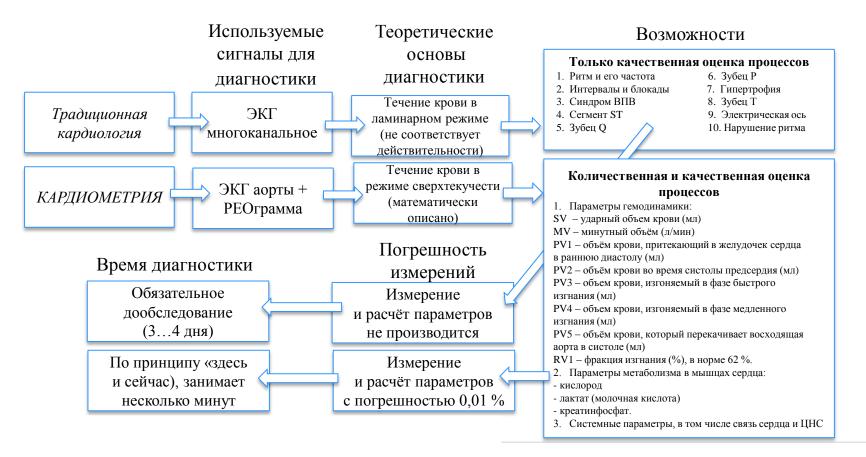
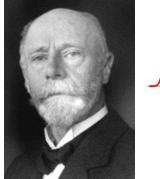

ОСНОВЫ КАРДИОМЕТРИИ.

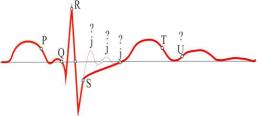

Фазовый анализ сердечного цикла. Измерение параметров гемодинамики с помощью ЭКГ. Сокращение мышц сердца в соответствии с фазовой структурой сердечного цикла

Лекция 1

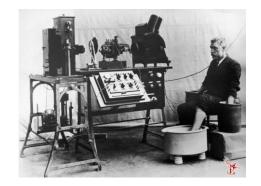
Смысл диагностики сердечно-сосудистой системы заключается в оценке важнейших параметров, определяющих качество жизни и долголетия, которыми являются функции сосудов и мышечной ткани, а также возможности их дальнейшей коррекции



Сравнение возможностей КАРДИОМЕТРИИ и классической кардиологии, показывающие перспективы изучения новой науки и её практического использования



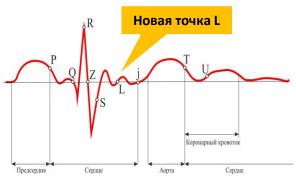
Теоретические основы кардиологии. Нерешённые проблемы


Открытие ЭКГ. Нобелевская премия 1924 г.

Willem Einthoven

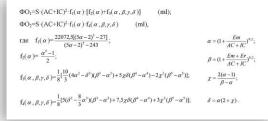
Введение буквенного обозначения закономерных форм на ЭКГ.

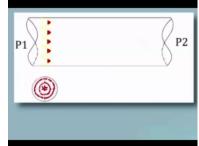
- Сегмент S-T не описан.
- Нет точного определения границ фаз сердечного цикла.


Математическое описание течения крови позволило создать новую науку – КАРДИОМЕТРИЮ и открыло новые уникальные возможности в диагностике с помощью ЭКГ

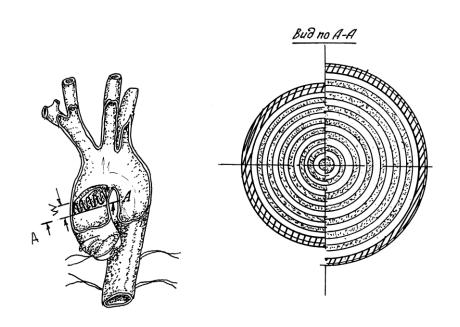
 $U_0 = 37.5 g t_0 \left[(5\varepsilon - 2)^3 - 27 \right] / \left[(5\varepsilon - 2)^5 - 243 \right]$

 $\varepsilon = \left(\frac{t_1}{t_2}\right)^{0.2} = \left(1 + \frac{\Delta t_1}{t_2}\right)^{0.2}$


 $\alpha = \left(\frac{t_2}{t_0}\right)^{0.2} = \left(1 + \frac{\Delta t_1 + \Delta t_2}{t_0}\right)^{0.2}$


- Создана теория фазового анализа сердечного цикла.
- Стало возможным измерять параметры гемодинамики и ставить точный диагноз с помощью ЭКГ.
- Определён единый критерий нахождения границ фаз сердечного цикла на ЭКГ экстремумы её производной.
- Введено новое обозначение на ЭКГ точки L, что позволило описать сегмент S-T.

Г. М. Поединцев, 1980 г.


- Математические уравнения гемодинамики для расчёта объёмов крови на основе длительности фаз сердечного цикла

Реально существующий режим сверхтекучести крови образуется в начальной стадии открытия клапанов и поддерживается за счёт расширения сосудов и плавного их возвращения в исходное состояние

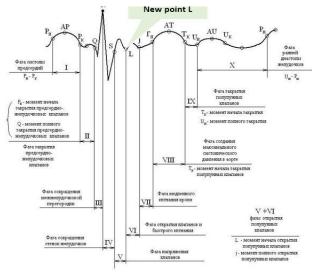
Реальная структура кровотока в «третьем» режиме текучести, открытом и математически описанном Г.М. Поединцевым. Формируется и поддерживается длительностями фаз сердечного цикла

Чередующиеся слои плазмы и элементов крови. Минимальные затраты энергии при движении, т.к. минимальное трение частиц к стенкам сосудов и между собой.

Математические уравнения гемодинамики для расчёта объёмов крови на основе длительности фаз сердечного цикла

Используя математические расчёты пульсирующего движения жидкости в эластичной трубке (артериальном сосуде), представленном на предыдущем слайде, можно рассчитать объем крови RV1, поступающий в желудочек сердца в фазу ранней диастолы, выраженный в процентах от объема наполнения (фракция изгнания):

$$RV1 = \frac{100 \cdot U_{01} \left[\varepsilon_1^5 - 1 + f_1(\varepsilon_1, \alpha_1, \beta_1) - f_2(\varepsilon_1) \right]}{U_{01} \left[\varepsilon_1^5 - 1 + f_1(\varepsilon_1, \alpha_1, \beta_1) - f_2(\varepsilon_1) \right] + U_{02} \left(\varepsilon_2^5 - 1 \right)} (\%)$$


Все коэффициенты являются сложными формулами, содержащими длительности фаз сердечного цикла.

В результате через измерения длительности фаз сердечного цикла определяются все фазовые объёмы крови, в частности - величина фазового объема ранней диастолы PV1, абсолютная (в мл):

$$PV1 = \frac{SV \cdot RV1}{100} \quad (M\pi)$$

Параметры гемодинамики, которые рассчитываются на основе длительностей фаз сердечного цикла

Регистрируя ЭКГ, измеряя длительности фаз сердечного цикла и подставляя в уравнения гемодинамики Г. Поединцева—О. Вороновой, расчётным путём получаем фазовые объёмы крови — важнейшие для диагностики параметры гемодинамики

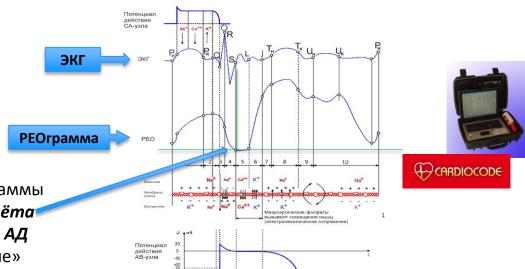
SV – ударный объем крови (мл)

MV – минутный объём (л/мин)

PV1 – объём крови, притекающий в желудочек сердца в раннюю диастолу (мл)

PV2 – объём крови во время систолы предсердия (мл)

PV3 – объем крови, изгоняемый в фазе быстрого изгнания (мл)

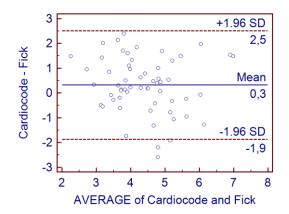

PV4 – объем крови, изгоняемый в фазе медленного изгнания (мл)

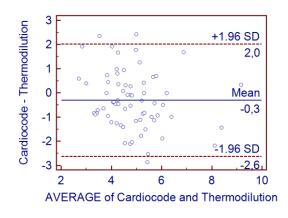
PV5 – объём крови, который перекачивает восходящая аорта в систоле (мл)

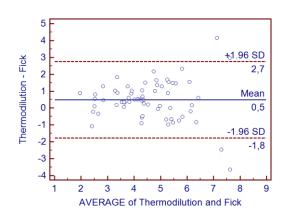
RV1 – фракция изгнания (%), в норме 62 %

- Для измерения длительности фаз сердечного цикла достаточно одного канала ЭКГ.
- Синхронная запись РЕОграммы, отображающая течение крови в аорте в каждой фазе, расширяет диагностические возможности.

Это эквивалентно изменению АРТЕРИАЛЬНОГО ДАВЛЕНИЯ




Важна синхронизация изолинии РЕОграммы к точке S ЭКГ. Это «О» системы отсчёта оля анализа отклонения от нормы АД в аорте). Анализируется «поведение» РЕОграммы относительно изолинии — выше или ниже, а также амплитуда в каждой из фаз


Сокращение мышц сердца в соответствии с фазами сердечного цикла

Сравнительный анализ измерения минутного объёма крови косвенным неинвазивным методом фазового анализа сердечного цикла с инвазивными методами термодилюции и Фика

Погрешность измерения минутного объёма крови методом фазового анализа сердечного цикла на уровне 0,01 %, в то время как методами термодилюции и Фика — на уровне 10 %.

Отображение информации

Скриншот программы, отображающий результаты измерения параметров гемодинамики. Все расчёты производятся автоматически

Кардиометрия – наука относится к области естествознания

К естественным наукам относятся науки, которые основаны на законах, аксиоматике и логике анализа данных.

Кардиометрия соответствует этим требованиям.

Законы.

Кардиометрия имеет девять законов:

- 1. Кровь движется по сосудам в режиме повышенной текучести (назван «третьим режимом» в отличие от ламинарного и турбулентного), характеризующегося малым трением при течении, за счет кольцеообразного сочетания элементов крови и плазмы.
- 2. СА и АВ узлы сердца, а также барорецепторы аорты БА, нервные центры являются барорецепторами, и генерация ими нервных импульсов (импульсов действия) зависит от наличия давления на них объемами крови.
- 3. СА-узел обеспечивает закрытие предсердножелудочковых клапанов.

- АВ-узел управляет тремя механизмами предварительной подготовки структуры потока крови в сосудах, заключающихся в:
- 1)Регулировке диастолического давления в аорте (сонной артерии).
- 2) Создании вихревых потоков крови перед открытием клапана аорты (сонной
- артерии).
- 3) Открытии клапана аорты (сонной артерии). БА-барорецепторы аорты (сонной артерии) выполняют функцию удержания структуры кровотока и продвижения ее по сосудам в режиме повышенной текучести.
- 6. Амплитуда фаз ЭКГ соответствует амплитуде сокращения мышц сердца. Работа фаз Q-R-S происходит в аэробном режиме только за счет затрат кислорода, без накопления лактата в мышцах сердца.
- 8. Работа фазы S–L происходит при электромеханическом сопряжении в анаэробном режиме с накоплением лактата в мышцах сердца. 9. При работе фазы L–j, происходящей под воздействием электромеханического
 - сопряжения, проявляется остаток креатинфосфата, обеспечивающего энергетическую функцию АТФ в следующем сердечном цикле.

Аксиоматика.

собой.

В процессе развития доказательной базы формируются теоремы, позволяющие на практике реализовать теорию.

Целью аксиоматики является доказательство соответствия наблюдаемого явления истине.

Логика анализа данных.

Последовательность рассуждений при анализе наблюдаемых явлений (данных), которая показывает, что одно явление (данные) вытекает из другого, т.е. взаимосвязаны между

Выводы

Теория фазового анализа сердечного цикла положена в основу новой фундаментальной науки — **КАРДИОМЕТРИИ**, составными элементами которой являются: законы, описывающие гемодинамику и работу сердца, аксиоматика — для доказательства правильности выбранного решения, логика анализа — для постановки диагноза

Вопросы для самопроверки

1.	Чем отличается теория ЭКГ, разработанная В. Эйтховеном, и КАРДИОМЕТРИЯ?	(стр. 11-15)
2.	На основе чего и как измеряются параметры гемодинамики с помощью ЭКГ?	(стр. 16-28)
3.	Какие параметры гемодинамики измеряются с помощью ЭКГ? Перечислите их.	(стр. 24)
4.	Что такое РЕОграмма?	(стр. 52-55)
5.	Какие возможности открывает синхронная регистрация ЭКГ и РЕОграммы?	(стр. 52-55)
6.	Что даёт синхронизация РЕОграммы с точкой S на ЭКГ?	(стр. 52-53)
7.	Расскажите как отображаются результаты измерения параметров гемодинамики на диспло	ee
	прибора «Кардиокод».	(стр. 88)
8.	Расскажите о биофизике сокращения сердца в последовательности фаз сердечного цикла.	(стр. 32-34)
9.	Перечислите законы кардиометрии.	(стр.78-79)
10.	Объясните почему кардиометрия является естественной наукой?	(стр. 80)

Кардиометрия. Основы теории и практики / под общ. ред. М.Ю. Руденко. – Таганрог; Москва: Изд-во ИКМ, 2020.– 215 с. ISBN 978-5-86746-108-4

https://cardiocode.net/books.html